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Abstract 

The adsorption of molecules of organic or inorganic compounds in an aqueous solution onto 
granular activated carbon involves a sequence of steps including: transfer of the molecules from 
the bulk phase of solution through the relatively stagnant, layer of solution adjacent to the 
external surface and solution in macropores and micropores of the pellet of activated carbon 
and occupation of the active sites on the inside of the pellet by the molecules. The present work 
analyzes and models this sequence of steps by resorting to the stochastic population balance of 
the numbers of molecules of adsorbate in the three states. The first comprises the bulk phase of 
the solution; the second, the layer of solution adjacent to the external surface and the solution in 
the macropores; and the third, the active sites on the inside surfaces of the micropores. The 
master equation has been derived for the case of a single adsorbate compound. The equations 
for the means, variances, and covariances of the random variables have been obtained through 
the system size expansion of the master equation. At equilibrium, the equations for the means 
reduce to the equation of the Langmuir isotherm. The unknown parameters in the equations for 
the means have been estimated by comparing the calculated results with the experimental data. 
These parameters have been adopted to predict the evolution of variances and covariances of 
the numbers of adsorbate molecules in the three states. 

1. Introduction 

Numerous techniques have been developed in recent years to remove contaminants 
such as toxic organic or inorganic chemicals from drinking or waste water. Among 
these techniques, active carbon adsorption, a partitioning process in which the 
molecules of the contaminants are transferred from a dissolved state in the aqueous 
phase to the surface of active carbon, has become one of the most effective means for 
this purpose. 

Extensive theoretical and experimental studies were conducted toward elucidation 
of the adsorption kinetics and isotherm (see e.g. [l-3 3). Smith et al. [4] experimentally 
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investigated the effects of adsorbent structure, particle size, initial adsorbate concen- 
tration, temperature, and adsorbent-solution ratio on the rates of adsorption of 2,4- 
dichlorophenol. A similar effort was undertaken by Weber and Morris [S] to deter- 
mine the effectiveness of adsorption of compounds with high molecular weights, e.g., 
alkylbenzenesulfonates. Weber and Rumer [6] have developed a mathematical model 
for intraparticle transport of diffusing molecules. In studying the ultimate capacity of 
adsorption, i.e. the adsorption isotherm, the assumption of monolayer adsorption, 
which is valid for numerous cases of adsorption by activated carbon from aqueous 
solutions, has led to the Langmuir isotherm at equilibrium [7-g]. Numerous variants 
of models for adsorption equilibrium giving rise to different isotherm equations, have 
also been proposed (see e.g. [3, 10, 111). 

2. Objectives 

The adsorption of contaminant molecules from aqueous solution by activated 
porous carbon includes the transfer of molecules from the bulk through the relatively 
stagnant aqueous layer adjacent to or in the macropores and micropores of the 
adsorbent pellet, where they are finally adsorbed onto the active sites. To study the 
kinetics such as the adsorption rate in the batch, the present work analyzes and 
models this sequence of steps by resorting to the stochastic population balance [i2], 
an approach based on the probability balance of the transferring of the contaminant 
molecules among their various states in the batch system; this gives rise to the 
nonlinear master equation of adsorption. A rational approximation by means of the 
system size expansion of this equation yields the macroscopic quantities, such as 
liquid- and solid-phase concentrations, as well as their fluctuations, which are the 
instantaneous deviations of these concentrations from their mean values. 

3. Mechanism and system description 

Let us consider a batch system consisting of a dilute aqueous solution of a con- 
taminant and porous pellets of granular activated carbon (GAC) to adsorb the 
contaminant. The adsorption of molecules of the contaminant onto a pellet of GAC, 
depicted in Fig. 1, includes the following two steps. 

(1) Reversible transport of molecules of the contaminant from state S1, which is the 
bulk phase of aqueous solution to state S2, comprising the relatively stagnant aqueous 
layer adjacent to the pellets of GAC and the aqueous phase in the macropores and 
micropores inside the pellets of GAC, and vice versa. In other words, transport of 
molecules from state S, to state S2 is accompanied simultaneously by the inverse 
transport of molecules from state SZ to state Si. 

(2) Adsorption of molecules of the contaminant from the aqueous phase, i.e. state 
SZ, to the active sites in the pellets (state S,), accompanied by the desorption of 
molecules from state S3 to state SZ. 
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Fig. 1. Conceptual illustration of the adsorption process: S1, bulk; Sz, aqueous phase in stagnant layer, 
macropores, and micropores; Sj, active sites in the pellets. 

Fig. 2. Transition diagram of adsorption: S I, bulk; Sr, aqueous phase in stagnant layer, macropores, and 
micropores; S3, active sites on the micropores. 

4. Modeling 

The adsorption system described in the preceding section comprises three states 
including (Fig. 2): the bulk aqueous phase, i.e. state SI ; ihe relatively stagnant aqueous 
layer adjacent to the pellet of GAC and in the macropores inside the pellet of GAC, i.e. 
state SZ; and the active sites on the inside surface of the micropores, i.e. state S3. Let 
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N,(t),N2(t), and N3(t) be the random variables representing the numbers of con- 
taminant molecules in stat- S1, SZ, and Ss, at time t, respectively. The realization of 
N,(t) is nl; that of Nz(t), n2; and that of N3(t), n3 _ Let (t, t + At) be a time interval 
sufficiently small so that at most one molecule will transfer from one state to another 
during this time interval. Then, one. niolecule may undergo a transition according to 
the following probabilistic laws. 

(1) Pr[a molecule. in state S1 at time t will be in state S2 at time (t + At)] 

= Phi - 1, ra2 + 1,~; t + At(n;t).- &,At + o(Ac). (la) 

In this expression, ;Zi, is the transition intensity of a molecule tram state S1 to state SZ, 
which is assumed to be proportional to the number of. molwles in state S1, or 

A12 = h2n19 W 

where k12 is the number-transfer coefficient from state S1 to state S2 that is to be 
estimated. 

(2) Pr[a molecuie in stat& S2 at time t will be in state S1 at time (t + At)] 

=p(n1 + l,n2 - 1, n3; t + AtI n; t) =,A,,& + o(At). (2a) 

In this expression, Rz 1 is the transition intensity of a molecule from state SZ to state S 1, 
which is assumed to be proportional tp the number of molecules in state SZ, or 

a 21 = k21n2, (2 W 
where kzl is the number-transfer coefficient from state SZ to state S1 that is to be 
estimated. 

(3) Pr[a molecule in state Sz, at time #. will be in state S3 at time (t + At)] 

= p(n1,nz - 1,n3 + 1; t + AtIn; t) = R,,At + o(At). (3a) 

In this expression, AZ3 is the transition intensity of a molecule from state S2 to state S3. 
Since the total number of adsorption sites of the pellets of GAC in the batch, Q, is 
a finite constant, the transition intensity also depends on the number of available sites 
(Q - n3) C7,81, i.e., 

. 
A23 = 23n2 k ‘in3. (34 

Note that the right-hand side of this equation is divided by the Avogadro number, A, to 
render the order of magnitude of kZ3 to be approximately the same as that of klz or kz 1. 

(4) Pr[a molecule in state S3 at time t will be in state S2 at time (t + At)] 

= p(nl,nz + l,n3 - 1; t + AtIn; t) = I,,At + o(At). (4a) 

In this expression, 3 b32 is the transition intensity of a molecule from state Sj to state S2’, 
which is assumed to be proportional to the number of molecules in state S3, or 

a32 = knn3, VW 
where kJ2 is the number-transfer coefficient from state S3 to state Sa that is to be 
estimated. 
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In the statements of ail the probabilistic laws given in the preceding paragraph, the 
vector representing a specific gopulation distribution which serves as the reference 
state in the population balance calculation, II, is defined as. 

Consequently, nl, n2, and n3 are invariant with respect to time, t. Furthermore, o(At) 
is a function approaching zero faster than At, i.e., 

4.1. Deriuation of the master equation 

Let p(nl, n2, n3; t + At) or p(n; t + At) be the joint probability of the system under 
consideration to be in the state having the number distribution of molecules, n, at time 
(t + At). Then, p( nl , n2, n3; t + At) is determined by the probabilities of occurrences of 
the following five mutually exclusive events. 

(1) At time t, (nl + 1) molecules exist in state S1, (n2 - 1) molecules in state S2, and 
n3 molecules in state SJ, with a probability of p(nI + I, n2 - 1, n3; t). During time 
interval (t, t + At), one molecule transfers from state S1 to state Sz with a transition 
probability of [kIz(nl + l)At + o(At)]; see Eqs. (la) and (lb). The number of mole- 
cules in state S1 will decrease from (nl + 1) to n 1, while the number of molecules in 
state S2 will increase from (n2 - 1) to n 2. Moreover, it is assumed that the process is 
Markovian, i.e., the transition of the molecule during time interval (t, t + At) is 
independent of its transition during the preceding time interval (0,t). Consequently, 
the probability for this event to occur is 

p(nl + l,n2 - 1,n3;t)[k12(n1 + 1)A.t + o(At)J. 

(2) At time t, (la1 - 1) molecules exist in state S1, (nz + 1) molecules in state Sz, and 
n3 molecules in state S3, with a probability of p(nl - l,n2 i- l,n,;t). During time 
interval (t, t + At), one mo!ecule transfers from state S2 to state S1 with a transition 
probability of [kzl (n2 + 1)At + o(At) J; see Eqs. (2a) and (2b). Hence, the probability 
for this event to occur is 

p(nl - 1, n2 + 1, n3; t) [kzl (nz + 1)At + o(At)]. 

(3) At time t, n, molecules exist in state S1 , (n2 + 1) molecules in state S2, and 
(n3 - 1) molecules in state S3, with a probability of g(nl, n2 + 1, n3 - 1;t). During 
time interval (t, t + At), one molecule transfers from state S, to state S3 with 
a transition probability of k23(n2 + l)([Q - (n3 - l)]/A)At + o(At); see Eqs. (3a) 
and (3b). As a result, the probability for this event to occur is 

Ph n2 + 1, n3 - 13) kZ3(n2 + 1) (, Q -(n3 - l)At + o(At)). 
A 

(4) At time t, nl molecules exist in state S1, (n2 - 1) molecules in state S2, and 
(n3 + 1) molecules in state S3, with a probability of p(ni, n2 - 1,n3 + 1; t). During 
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time interval (t, t + At), one molecule transfers from state S3 to state S2 with 
a transition probability of [&(PI~ + 1)At + o(At)“J; see Eqs. (4~3) and (4b). Conse- 
quently, the probability for this event to occur is 

p(n, ,n2 - 1, n3 + 1; t) [k3,(n3 + l)At + o(h)]. 

(5) At time t, ni molecules exist in state S1, n2 in state S2, and n3 in state S3, with 
a probability of p(nl, n2, n3; t) or p(n; t). Thus, the probability of the system to remain 
as such during time interval (t, t + At) is 

kl2nl + km2 + k23n2 
Q - n3 

A + k3,n,)At + o(Al)]. 

The conditional probability of more than one molecule transferring from one state 
to another in time interval (t, t + At) is o(At). Thus, by taking into account al the 
probabilities listed above, we have 

p(n; t + At) = &zl + l,n2 - 1, n,;OCk,2(4 + l)At + o(Wl 

+ Ph - l,n2 + l,n3;t) [k&t2 + l)At + o@t)l 

+ p(n,,n2 + Ln3 - l;O 

X 

C 
k,,(n, + 1) Q - ‘; - I) At + o(At) 1 

+ p(n1,n2 - 1, n3 + 1; t) [k3,(n3 + l)At + o(At)] 

+ k23 n2 Q i n3 + k32 n3 
j 

]A, + o(At)j 

+ o(At). (5) 

Note that the total number of contaminant molecules in the batch, na, remains 
invariant during the process of the adsorption, i.e., 

no = N,(t) + N2(t) + N3(t). (6) 

Hence, only two random variables, e.g., N,(t) and N3(t), are independent in 

CNdO9N2W,N3(01. 
Transposing p(n; t) to the left-hand side of Eq. (5), expressing n2 in terms of no, n,, 

and n3, dividing the resultant equation by At, and taking the limit as At --+ 0 yield 

dp(n; 0 
dt 

= Mnl +’ Uph + 1, n3; 0 

+ kdno - nl - n3 + l)ph - Ln,;t) 

+ kdno - nl - n3 + 1) Q-(n3 - ‘)p(nl n3 - 1-t) 
A 

9 9 
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+ k,,(n, + l)phn3 + 1; t) 

- 

[ 

hzn1 + bho - n1 - n3) 

+ b3hl - n1 - n3) 
Q - n3 

A 
+ kx+ 1 ph,wt). 

By applying the one-step operator Emi defined by its effect on the arbitrary function, 
f(ni), as (see e.g. [12]) 

E,,f(ni) =_f(ni + l) 

to Eq. (7), we obtain the 

and E, ‘S(ni) =f(ni - 1) 

following reduced master equation; 

18) 

““E; ‘) = (E,, - 1) [klz nl p(n; t)] 

+ (KY1 - 1) k&n,, - n, - n3) Q ; u3 p(n; t) 

+ (Em - 1) Ckx ndw 01. (9) 

Solution of the above equation leads to the joint probability distribution of the 
population of contaminant molecules among the three states, thus providing the 
complete statistical description of the adsorption process in the batch system. Solu- 
tion of this class of equations, either analytical or numerical, however, involves solving 
a large set of differential equations; moreover, it is time consuming. Nevertheless, 
knowledge concerning the first and second moments of p(n; t), i.e., means and fluetu- 
ations, suffices for a wide variety of practical applications. 

4.2. Derivation of the governing equations for means and fluctuations 

Direct solution of the master equation, i.e. Eq. (9), leading to the joint probability 
distribution of N,(t) and N3(t), is extremely difficult, if not impossible. Instead, there- 
fore, we evaluate the mean and the quantities defined by higher moments, e.g., variance, 
of each random variable from the master equation. The third term on the right-hand 
side of Eq. (9), however, is nonlinear with respect to the random variables, thereby 
preventing the moments to be evaluated exactly. This difficulty is circumvented here by 
resorting to the system size expansion, a rational approximation technique based on 
a power series expansion. It gives rise to the deterministic macroscopic equations and 
the equations of fluctuations from the master equation [ 121. 

In adopting the system size expansion, a suitable expansion parameter need be 
selected. It must be a parameter contained in the master equation. Furthermore, it 
must govern the magnitude of fluctuations, and therefore, the magnitude of jumps. In 
the system under consideration, the total number of contaminant molecules in the 
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batch, no, is chosen as the expansion parameter. Then, the random variables, N,(t) 
and N3(t), can be expressed, respectively, as 

N1 (t) = no #(0 + nr$” Yr (t), (10) 

N3(t) = no O(t) + n$2 Y2 (t), (11) 

where 4 and 8 correspond to the deterministic variables in the macroscopic equations, 
while Yl(t) and Yz(t) are the new random variables characterizing the fluctuations of 
the system. The realization of Yl(t) or Yz(t) is y, or y2, respectively. Equations {lo) 
and (11) indicate that the joint probability, p(n; t), in Eq. (9) is presumed to have 
a sharp maximum around the macroscopic values, no@(t) and no&t), with the 
fluctuations of orders n#’ Yi and n 61” Y,, respectively [12]. Accordingly, the joint 
probability of NL and NJ, p(n; t), is now transformed into the joint probability of y1 
and y2, WY, ,y2; 0, i.e., 

POCO = ‘yfYbY2; 0. (W 

Substituting Y(y,, y,; t) into the master equation, Eq. (9), expanding the right-hand 
side of the resultant expression into Taylor series, and collecting the terms corre- 
sponding to the same power of the system size parameter, nA/2, lead to the equations 
governing the evolution of the macroscopic terms of the system given below (Appen- 
dix A): 

d# 
dt= -h24 + b,U -d- 01, (13) 

$ = kz3 $ (1 - 4 - 8) (ct - 0) - ks28_ (14) 

Collecting the terms of order n$ gives rise to the equations governing the magnitude of 
fluctuations around the macroscopic vaIues as follows (Appendix B): 

iE[ Yk] = $ AkjE[Yk], k = 1,2, 
j=l 

(15) 

$ECY,Y,I = i AikE[YkYj] + 5 AjkE[YiYk] +B,, i,j = 1,2, 
k=l k=l 

(16) 

where 

A=(2 Ii::) 

\ 
-k+I-cc) -kz+l +a~-+- 

1 (17) 

28) - ksz 
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I 
1 

klz# + Ml - 4 - 0) 0 
= 

’ 
08) 

0 kz3 j (1 - # - 0) (a - 8) + k&I 
I 

Equations (15) and (16) are expressions of the first and second moments of the system’s 
fluctuations, respectively. 

Taking the averages over Eqs. (10) and (11) yields, respectively, 

WW)] = no#(0 + ~~“mwn (W 

E[N&) J = notqt) + n;‘2E[Y3(t)]. (20) 

The deterministic terms, r$@) and e(t), in these expressions are obtained by solving 
simultaneously the macroscopic equations, Eqs. (13) and (14), while the terms for the 
means of fluctuations, E[ Y,] and E[ Y2], are the solutions of Eq. (15). Consequently, 
E[N,(t)] and E[N,(t)] can be determined from Eqs. (19) and (20), respectively. 

In modeling the active carbon adsorption in a batch, it is reasonable to assume that 
no fluctuations occur in the system initially, i.e., 

El3W)l = 0, (21) 

E[ Y#)] = 0. (22) 

Solving Eq. (15), subject to these initial conditions, yields 

EI:Y&)] = 0, 123) 

E[Y,(t)] = 0. (24) 

Thus, according to Eqs. (19) and (20), E[N l(t)] and E[N3(t)] are, respectively, the 
solutions of the macroscopic equations, i.e., 

ECNMI = no#W, 

ECWOI = &W). 

Substituting these two expressions into both Eqs. (13) and (14) leads 

dWWN 
dt 

= - WCNl’(Ol + k21{ no - WWOI - EC&(N) 

dEfit3’r)1 = k,,{n, - E[N,(t)] - E[N,(t)]} Q - ‘y3’t)’ 

(25) 

(26) 

to 

(27) 

Solving simultaneously Eqs. (27) and (28) subject to the initial conditions 

W&(O)] = no (29) 
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and 

W%(O)1 = 0, 

gives rise to E [N,(t)] and E[Ns(t)]. Taking expectations over Eq. (6) yields 

no = mh@)l + mMOl + mwKI,~ 

from which E[N,(t)] is evaluated. 

4.3. Expressions in terms of concentrations 

(30) 

(31) 

By definitions, the liquid-phase concentration C and the solid-phase concentration 
q can be expressed, respectively, as 

(32) 

(33) 

where V is the volume of solution and W is the weight of adsorbent. 

4.4. Equilibrium state - Langmuir isotherm 

As t + co, the system reaches equilibrium, and thus the time derivatives on the 
left-hand side of Eqs. (27) and (28) vanish. In other words, Eqs. (27) and (28) reduce, 
respectively, to 

0 = kzj(no - E[N,(w)] - E[N,(oo)]) ’ - Eys(m)1 - k&[&(w)]. 

(35) 

Substituting Eq. (31) into the above expressions yields 

0 = - k,,W%(~)l + kzl ~W’M4lr (36) 

0 = kdXW@l (Q - H3,@)1) - ~~dWW~0)lA. 

Equation (36) can be rewritten as 

E[N,(oo)] + E[N,(ao)l = ECN2(00)1- 

Substituting this expression into Eq. (37) leads to 

(371 

(38) 
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In the light of Eqs. (32) and (33), this equation reduces to 

By letting 

Q 
4m = -jijq 

and 

W-N 

(41) 

(42) 

we obtain, from Eq. (40), 

400 = 
q,bC, 

l+bC,’ 

which is the expression for the ceIebrated Langmuir isotherm [7,8]. 

(43) 

5. Parameter estimation 

The governing equations of the present system, Eqs. (27) and (28), contain five 
parameters, Q, k 12, kZ1, kz3, and ks2, which can be estimated through the following 
procedure. 

(1) Determine k12 from the experimentally measured initial rate of concentration 
variation. As t + 0, E[NZ(t)] + 0 and E[N,(t)] + 0, hence, Eq. (27) becomes 

lim dECN,(t)l 

dr = - kdW’W)l. 
t+0 

(44) 

By substituting Eq. (32) into this expression and noting that E[Nz(t)] -+ 0 as t + 0, we 
obtain 

li_i -$ In C(t) = - k12. (45) 

Thus, k12, reflecting the initial rate of molecular transfer from the bulk to the stagnant 
layer and macropores, can be obtained from the experimentally measured initial rate 
of concentration variation. 

(2) Calculate Q from Eq. (41). 
(3) Express k 23 in terms of k 21 and ks2 in the light of Eq. (42) as 

k _klz+h 
23 - 

k12 V k32b’ 

(4) Minimize the objective function, the sum of the squares of the differences 
between the model-based rates computed numerically from Eqs. (27)-(33) and the 
corresponding experimentally measured rates, through the random search technique 
with kzl and k32 as the decision variables. 
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Fig. 3. Comparison between the model and the experimentally measured concentration variations of 
trichloroethylene in the aqueous solution containing activated carbon particles with various diameters 
[13]: +-a-) 917pm; (-W) 772@n; (-A-) 647pm. 

6. Results and discussion 

The available experimental data by Lee [13] are reproduced in Fig. 3. The data 
represent the removal of trichloroethylene from its aqueous solution using carborun- 
dum activated carbons having essentially the same surface area but various geometric 
mean diameters of 917,772, and 647 t..tm as the adsorbent. The experimental temper- 
ature, T, volume of solution, V, the initial concentration of trichloroethylene, CO, and 
the adsorbent loading, W, are 25 “C, 1.04 1, 0.007 mmoljl, and 1 g, respectively. The 
values of parameters of the Langmuir isotherm, qm and b, determined from the 
isotherm data of Lee, are 0.41 #mmol/g and 172 l/mmol, respectively. The concentra- 
tion variations of trichloroethylene in the aqueous solution during the adsorption 
calculated by the present stochastic model, i.e. Eqs. (27), (28), (31), and [32), have been 
fitted to the experimental data according to the procedure outlined in the preceding 
section; the results are plotted in Fig. 3. Obviously, the adsorption rate increases 
slightly with the decrease in the diameter of the activated carbon particles, and the 
present model agrees well with the experimental data. The uptake of trichloroethylene 
onto GAC as a function of time, calculated from Eq. (33) with the parameters listed in 
Table 1, is depicted in Fig. 4. ,. 

The values of the number coefficients, kij's, evaluated by the procedure outlined in 
the preceding section, are summarized in Table 1. Obviously, the propensity of 
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Parameters of the present model for activated carbon particles of various sizes 

Particle diameter Q/A 
(wd (mmol) (lrS,fin-‘) $nYt) fmo* min)-’ ;;n- ‘) 

917 0.410 0.030 0.532 145.6 0.047 
772 0.410 0.034 0.427 87.5 0.039 
647 0.410 0.049 0.206 14.6 0.017 

10 

8 

0 50 100 150 200 

Time (min.> 

Fig. 4. Model predictions of uptake of trichloroethylene onto activated carbon particles with various 
diameters: (- )917pm:(-----)772j~m;(-a-•-)647pm. 

a molecule of trichloroethylene to transfer from state SZ to state SI, characterized 
by kzl, is larger than that from state SI to state SZ, characterized by k12, for all 
three different sizes of carbon particles. The net flux of molecules, however, is from 
state SI to state SL for unsteady-state adsorption since the number of molecules 
in state Sl is much larger than that in state SZ; Moreover, the propensity of a 
molecule of trichloroethylene to transfer from state 52 to state S3, characterized 
by h(Q - ns)/A, is much larger than that from state S3 to state SZ, characterized 
by k32, indicating that the adsorption of the molecules of trichloroethylene from 
the macropores to the active sites on the micropores of the particles is almost 
irreversible. 
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Because of Eqs. (10) and (1 l), the variances and covariances of NI (t) and Nz(t) are 
expressed as 

var[Nl(t)] = n~E[Yl(t)~], 

var[N3(t)] = ~oE[Y~(~)~], 

(47) 

(48) 

cov[N1(t), N3(t)] = noE[ Y1(t) Yz(t)], (49) 

where E[ Yl(t)‘], E[Yz.(~)‘], and E[ Yr(t) Yz(t)] are obtained by solving the equations 
for the second moments in Eq. (16). The magnitude of fluctuations of the concentra- 
tion in the aqueous solution around its macroscopic value due to the molecular 
number variations, characterized by the variances and covariances in Eqs. (47j(49) is 
of order no 1/Z (see e.g. [12]), where no is the size of the system whose magnitude is of 
the order of the Avogadro number under the experimental condition of Lee [13]. 
Consequently, these fluctuations are negligible compared to the mean concentration. 
The slight scattering of the experimental data might be attributable to inherent 
experimental errors and nonideal experimental conditions, such as imperfect operat- 
ing procedure, instrumental noises, nonuniform bulk concentration, and irregular 
structure of the particles of GAC. It is worth noting, however, that for an ultra-dilute 
system, the fluctuations due to the molecular number variations could become 
significant. 

The present work parallels that of Argyelan et al. [14]; nevertheless, the mech- 
anism conceived in deriving the model of the former is substantially different from 
that of the latter. Moreover, the former resorts rationally to the system-size expan- 
sion to circumvent the difficulty in solution arising from the nonlinearity of the 
model while the latter resorts, apparently arbitrarily, to the decoupling of the non- 
linear term in their model so that the conditional-expectation approach can be 
adopted. The latter also seem to have introduced a physically indefensible conver- 
sion factor to transform the molecular number to the molar concentration in the 
solid state. 

In principle, the current stochastic model can be extended to the more general cases 
such as the continuous Aow adsorption system, the system with multiple adsorbates 
and competitive adsorption. Nevertheless, for the latter extension, the transition 
intensities need to be modified to address the complications attributable to the 
interference and competition among the adsorbates. 

7. Coucluding remarks 

A stochastic model has been proposed to describe the adsorption dynamics of 
molecules of a contaminant in aqueous solution on the activated carbon in a batch. 
The master equation has been derived for the case of a single contaminant compound. 
The variations of the macroscopic values with time, such as concentrations in the 
aqueous solution and in the carbon particles, have been obtained through the system 
size expansion of the master equation; the equilibrium of these concentrations 
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naturally gives rise to the Langmuir isotherm. The predicted concentration variations 
are in accord with the available experimental data. The present model is capable of 
predicting the temporal variations of the adsorption rates of a single adsorbate in 
a batch system and may be extended to the case of multiple adsorbates and competi- 
tive adsorption. 
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Nomenclature 

A 
b 
c 
CO 
COV [Ni(t)Nj(t)] 
E ENi( 
ECY401 
EC fi(f) y,(t)] 
k*- Y 
ni 
Ni(t) 

no 

4 
4m 
Q 
V 
W 

Yl (t) 
y2 (0 

Greek letters 

; 
w 

Avogadro number 
coefficient of the Langmuir isotherm equation 
liquid-phase concentration, mmol/l 
initial liquid-phase concentration, mmol/l 
covariance of random variables Ni(t) and Nj(t) 
mean of random variable Ni(t} 
mean of random variable Yi(t) 
cross-moment of random variables Y!(t) and Yj(t) 
number-transfer coefficient from state Si to state Sj 
realization of random variable N;(t), i = 1,2, 3 
random variable representing the number of contaminant molecules 
in state Si, i = 1,2,3 
total number of contaminant molecules in the system 
solid-phase concentration, umol/g 
coefficient of the Langmuir isotherm equation 
total number of adsorption sites in the system 
volume of solution 
weight of adsorbent 
random number characterizing the fluctuations of Nr(t) 
random number characterizing the fluctuations of N3(t) 

Q/no 
A/no 
deterministic variable corresponding to the macroscopic property 
of random variable N3(t) 
transition intensity of a molecule from state Si to state Sj 
deterministic variable corresponding to the macroscopic property 
of random variable NI(~) 
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Appendix A: Derivation of the macroscopic equations, Eqs. (13) and (14), 
by system size expansion 

The realization of Eq* (10) and that of Eq. (11) can be written, respectively, as 

n1 = w$(t) + ay2y1, (4 

rz3 = n&(t) + #y2. (A2) 

Recall that in the context of deriving the master equation, the state or dependent 
variable of interest is the joint probability of the population distribution, 
p(nl , n,, n3; t), and the realization of random variables at time t, i.e., nl, n2, and n,, at 
the reference state, is regarded to be invariant with respect to time. Consequently, the 
time derivatives of Eqs. (Al) and (A2) are, respectively, 

dY1 l/2 d4 

-=-%I dt’ dt 

dy2 1/2 df3 

-=-no dt’ dt 

Hence, the left-hand side of Eq. (9) can be rewritten as 

d&t) = d~‘(yi, yz; t) dy 
dt dt 

a!f’ dy, ~ a!?’ dy2 

=dt+G dt aY2 dt 

ay 112 db ay =--n --_ i/2 de ay -_ 

at O dt ay, no dt ay, - 

(A3) 

(A4) 

The step operator, E,, , changes nl into (nl + 1) and, therefore, y1 into (yI + no 1’2), 
Thus, it can be expanded into Taylor series as 

E,, = 1 + nc1j2 2-+ln~1 a2 
dy1 2 av: + ... * 

Similarly, 

E 
n3 

= 1 + n< 1/2 

Emi1 = l- 

WI 

Substituting Eq. (A5) into the left-hand side and Eqs. (A6)-(A9) into the right-hand 
side of Eq. (9) yield 

a!P 
-- l/2 d# ay 

no 

--- t/2 df3 a y -- 

at dt ayr no dt ay2 
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= 12 k 

+ kzl 1 - 4/* a+!.&1 a* 
ay, 2 ay: + *-* 

x(Cn0 - In0# + n Y’YJ - (no0 + WY2)l q 

+ k23#l-1n;i 1 - np2 _!-+!.(p 
dY2 2 

x {[no - (no4 + nly2y,) - (no8 + nly’y*)l @no - nod - t#“Yz) q 

= k12 r#' g5 - ay + aw) + 1 g2y + 
ay, ay, - “* 5 ay: 

+kzl -n;‘2(1 -$ +I)- + ay ah yu) +wzw 1 
-.a 

aY1 aY1 aY1 

a9 + 
+$l -4 4)- 

aY: 

+ kz3/3-’ - r1;‘~(1 - C#I - @(a - O)E + (1 - # - 19) a(y2y) 
dY2 dY2 

+ k32 
I,2Bay I w,w 1 m+ 

no 
a3 aY2 

+-(j- . . . 
2 ayf - 

(AlO) 

Now that we have set 

Q= an0, (Al 1) 

A = l-h, 6412) 

because the total number of the contaminant molecules in the batch, no, the total 
capacity of the micropores of the system, Q, and the Avogadro number A are al1 fixed. 
Collecting the resultant terms of order n;” in Eq. (AlO) leads to 

dq58Y deaY --- ------_ 
dt ah dt aY2 

kl,d921(l-4--8)~ 
1 1 

- k23 j (1 - # - @(a - 6) g + ks20 g. 
2 

(A13) 
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The terms in the above expression are all proportional either to 81y/8YI or to aY/ay,. 
The conditions for Eq. (A13) to be valid are 

d4 
dt= - kl2# + k,,(l - 4 - a (A14) 

dt? ,=k,,$(l -+-e)(a-e)-k~28, (A15) 

which are the macroscopic equations of the system, i.e., Eqs. (13) and (14), respectively, 
in the text. 

Appendix Ek Derivation of the equations of fluctuations by the system size expansion 

Collecting the terms proportional to $ in Eq. (AlO) leads to 

ay k @Yl ‘y) 1 a2’y 
at = I2 ay1 

+-+- 
2 aY! 

8(YI ‘y) + 3(Yz W 
dY1 JYi 

+k 23 $ ((I - 4 - l9) “(;; y”) + (a - 6) a(;;**) 
2 

This general form of the linear Fokker-Planck equation can be rewritten compactly 
as 

a!Y -= -xAij$ at i,j i 

where 

: 

- Wlz + k21) - k2l 
= 

- kZ3 j (0 - cx) -kZ3$(1 +a--+28)- ks2 
I 

I 

032) 

(B3) 
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I 

k124 + kdl - 4 - 8) 0 

= 
kz3 j (1 - # - @(a - 

(B4) 
0 0) + k32 0 

Multiplying Eq. (B2) with yk, k = 1,2, and integrating the resultant expressions yield 
the equations for the means as (see e.g. [12]) 

;WJ = i &ECY,I, k = 1929 OW 
j=l 

which is Eq. (15) in the text. Similarly, multiplying Eq. (B2) with viyj, i,j = f,2, and 
integrating the resultant expressions give the equations for the second moments as (see 

e.g. P23) 

$ E[Yi Yj] = i AikE[J’k Yj] + 5 A,E[Yi J’k] + Bij, i,j = 1,2, (Be) 
k=l 

which is Eq. (16) in the text. 

k=l 

Cl1 

PI 

c31 

L-41 

PI 

c71 
PI 
PI 

WI 
Cl11 

CM 

Cl31 

Cl41 
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